Technique

Toutes les plantes  Base Botanique  Base technique  le sol  fertilisation   irrigation   multiplication   maladies

La photosynthèse

Extrait de la page Wikipédia qu'il faudrait rendre plus accessible

La photosynthèse (grec φῶς phōs, lumière et σύνθεσις sýnthesis, composition) est le processus bioénergétique qui permet aux plantes et à certaines bactéries de synthétiser de la matière organique en exploitant la lumière du soleil. Les besoins nutritifs de ces organismes sont du dioxyde de carbone, de l’eau et des sels minéraux. La photosynthèse est à la base de l'autotrophie de ces organismes. La photosynthèse est la principale voie de transformation du carbone minéral en carbone organique. En tout, les organismes photosynthétiques assimilent environ 100 milliards de tonnes de carbone en biomasse, chaque année1.

La photosynthèse se déroule dans les membranes des thylakoïdes, chez les plantes, les algues et les cyanobactéries, ou dans la membrane plasmique chez les bactéries photosynthétiques. Une conséquence importante est la libération de molécules de dioxygène.

La découverte du mécanisme

  • Dans l'Antiquité, Aristote pensait que le sol fournissait aux plantes les éléments dont elles ont besoin.
  • Au XVIIe siècle, Jan Baptist van Helmont démontre qu'un saule planté en bac a pris 77 kg en 5 ans alors que le sol contenu dans le bac ne diminue que de 57 g ; il attribue la différence à l'action de l'eau.
  • Au XVIIIe siècle, plusieurs scientifiques mettent en évidence les notions de respiration et de production d’oxygène par les plantes et l'importance de la lumière dans ce dernier phénomène. Ce sont d’abord deux chimistes anglais : Stephen Hales en 1727, qui pense que l'air et la lumière contribuent à la croissance des plantes, et Joseph Priestley entre 1771 et 1777 qui met en évidence le rejet d’oxygène. À leur suite, Jan Ingen-Housz, médecin et botaniste hollandais, établit en 1779 le rôle de la lumière dans la production d’oxygène par les plantes. Puis Jean Senebier, un pasteur suisse, à partir des travaux d’Antoine Lavoisier sur la composition de l'air, comprend que les plantes consomment du dioxyde de carbone et rejettent du dioxygène lors de cette phase.
  • Au début du XIXe siècle, Nicolas Théodore de Saussure démontre la consommation d’eau lors de la photosynthèse. La chlorophylle est isolée par des chimistes français en 1817, Pierre Joseph Pelletier et Joseph Bienaimé Caventou.
  • Au milieu du XIXe siècle les grandes lignes du mécanisme sont comprises, transformation de l'énergie lumineuse, consommation d’eau et de dioxyde de carbone, production d’amidon et rejet de dioxygène. L'expérience cruciale d’Engelmann (1882), où des bactéries servent d’indicateur de la production d’oxygène, montre clairement le rôle de la couleur de la lumière.
  • C'est au cours du XXe siècle que l'explication plus détaillée du processus s’établit. Le début du siècle voit la description de la structure chimique de la chlorophylle puis la découverte de l'existence des types a et b. Robert Emerson établit en 19322 que 2 500 molécules de chlorophylle sont nécessaires pour émettre 1 molécule d'O2. Dans les années 1930, les travaux de Robert Hill permettent d'y voir plus clair. À l'issue de ses expériences, la photosynthèse se présente comme une réaction d'oxydo-réduction au cours de laquelle le carbone passe d'une forme oxydée à une forme réduite : CO2 → HCHO ; et l'oxygène d'une forme réduite à une forme oxydée : H2O → O2
  • On a récemment découvert du nanoplancton qui vit à des profondeurs où il n'y a pratiquement plus de lumière. Certaines algues marines (cryptophytes, dont rhodomonas sp. et chroomonas sp.), à température ambiante et en condition d'illumination défavorable, sont capables, grâce à des « antennes » protéiques, et semble-t-il grâce à des protéines (bilines) utilisées en plus de la chlorophylle, de mieux capter la lumière et d'utiliser la cohérence quantique pour optimiser leur utilisation du rayonnement solaire incident. Cela leur permet de conduire plus de 95 % des photons jusqu'à leur « but »3. Ce phénomène pourrait exister chez d'autres végétaux, voire être courant.

Vue générale

La photosynthèse est l’un des plus anciens processus biogéochimiques de la terre. On a retrouvé par exemple des microfossiles d’organismes similaires à des bactéries, vieux de 3,8 milliards d’années, probablement capables de réaliser la photosynthèse.

C'est aussi le plus important. Elle fournit la quasi totalité de la matière organique et de l’énergie nécessaires à l’existence des écosystèmes de la planète, les autres mécanismes de chimiosynthèse, comme la chimiolithotrophie, (et les organismes qui en dépendent), étant marginaux.

Toutes les plantes terrestres (exceptées certaines plantes parasites comme les Orobanches) et toutes les algues ainsi que certaines bactéries se servent de la photosynthèse.

La photosynthèse comprend trois phases :

  • L’énergie chimique est utilisée pour réduire le CO2 et incorporer le carbone dans des composés organiques, riches en énergie, qui permettent, grâce à l’anabolisme (synthèse organique), la croissance des êtres vivants et grâce au métabolisme (transformation) énergétique un apport en énergieNote 1.

Les premiers éléments ainsi fabriqués, via le cycle de Calvin, sont des sucres (glucose). Ce processus est représenté par l'équation suivante :

6CO2 + 12H2O + lumière → C6H12O6 + 6O2 + 6H2O.

On rencontre également souvent, cette équation sous la forme d'un simple bilan de matière, ce qui masque le fait que les atomes du dioxygène produit ne proviennent que de l’eau :

6CO2 + 6H2O + lumière → C6H12O6 + 6O2

Remarque : certains organismes photosynthétiques (des bactéries) ne produisent pas d'O2 et le CO2 n’est pas l'unique source de carbone. Ces molécules d'O2 et de CO2 ne sont donc pas les dénominateurs communs de la photosynthèse. Il serait alors plus rigoureux de définir la photosynthèse comme étant « une série de processus dans lesquels l’énergie électromagnétique est convertie en énergie chimique utilisée pour la biosynthèse du matériel cellulaire » comme le propose Gest (2002)4.

La photosynthèse peut se faire dans les bactéries (chez les cyanobactéries), certains protistes, et dans les chloroplastes des plantes et des algues. Un seul animal est connu pour être le siège d'un processus de photosynthèse, cependant il ne produit pas lui-même les chloroplastes où elle se déroule, il les trouve dans les algues dont il se nourrit.

Le support de la photosynthèse

Articles détaillés : Chloroplaste et Photosystème.

La photosynthèse se déroule dans les membranes des thylakoïdes, très riches en protéines et pigments ; les plus connus étant les chlorophylles ; ces pigments (par exemple : chlorophylle a,b et caroténoïdes) présentent différents spectres d'absorption.

Chez les eucaryotes photosynthétiques, la photosynthèse se déroule dans un organite spécifique : le chloroplaste issu de l'endosymbiose d'une cyanobactérie il y a environ un milliard et demi d'années.
Dans la cellule, au sein des membranes photosynthétiques, des « antennes collectrices de lumière » (décrite au début des années 2000, à une résolution quasi-atomique grâce à la cristallographie-rayons X) augmentent et régulent la section efficace de capture de l'énergie lumineuse. Elles permettent d'orienter l'énergie lumineuse vers d'autres protéines membranaires : les centres réactionnels, qui transformeront cette énergie lumineuse en énergie chimique.

L'ensemble des antennes collectrices et des centres réactionnels est appelé « photosystème ». Les photosystèmes interviennent dans la première phase de la photosynthèse en capturant les premiers électrons initiant la réaction photochimique.

Quand la lumière est « trop » intense, un mécanisme de protection (non photochimique) se met en place, évacuant l’excès d’énergie lumineuse sous forme de chaleur ou de fluorescence (quenching non photochimique) pour limiter le stress oxydatif destructeur que causerait sans cela la formation d'espèces réactives de l'oxygène (ROS). D'autres mécanismes permettent également d'éviter la formation de ces ROS en cas de luminosité trop importante : le cycle des xanthophylles, le cycle eau-eau, la chlororespiration et possiblement la photorespiration dont on ignore le but véritable. On a d'abord cru que l’antenne collectrice de lumière LHCII changeait de conformation, mais des travaux récents (spectroscopie) laissent penser qu'elle est rigide, et orientent vers un nouveau mécanisme (peut-être une inactivation par interaction avec une autre protéine) Note 2,5.

Les deux phases de la photosynthèse

Si la photosynthèse peut s’étudier de manière globale avec :

6CO2 + 12H2O + lumière → C6H12O6 + 6O2 + 6H2O.

Ce processus se déroule en réalité en deux phases bien distinctes :

1. Les réactions photochimiques, appelées communément « phase claire », qui peuvent se résumer ainsi :

12H2O + lumière → 6O2 + énergie chimique (24 Hydrogènes) .

2. Le cycle de Calvin, appelé aussi phase de fixation du carbone ou phase non-photochimique, ou encore improprement appelé « phase sombre » :

6CO2 + énergie chimique (24 Hydrogènes) → C6H12O6 + 6H2O

Ce qui est noté « énergie chimique » correspond à 12 molécules de NADPH+H+ et de l'ATP. On aura remarqué que la 2de phase utilise l'énergie chimique fournie par la 1re phase photochimique. La 2de phase dépend aussi de la lumière, mais indirectement. C'est pourquoi l'expression « phase sombre » souvent utilisée dans le passé, est en fait inappropriée.

Les réactions photochimiques (ou phase claire, terme désormais désuet)

La lumière nous parvient sous forme de photons. Ces photons possèdent un potentiel énergétique différent selon leur longueur d'onde. L’énergie transportée par un photon est inversement proportionnelle à la longueur d’onde. Un photon de lumière rouge possède moins d’énergie qu’un photon de lumière bleue.

Les pigments absorbent mieux certaines longueurs d’onde. Par exemple, la chlorophylle absorbe bien la lumière rouge et la lumière bleue, mais elle n’absorbe pas bien la lumière verte ce qui lui donne cette couleur. Les caroténoïdes quant à eux absorbent mieux la lumière verte mais pas bien la lumière jaune ou la lumière orange ce qui leur donne cette couleur.

Lorsqu’un pigment capte un photon d'énergie correspondant à sa capacité d’absorption, un de ses électrons passe à l’état excité. Cette énergie peut se transmettre de quatre façons :

  • soit en la réémettant sous forme de photon lumineux,
  • soit sous forme de chaleur,
  • soit en transmettant l’énergie par résonance,
  • soit en effectuant de la photochimie.

Ces deux premières voies ne sont pas utiles au processus photosynthétique car elles perdent une partie de l'énergie, mais la troisième ne présente aucune perte d’énergie. La quatrième voie correspond au transfert de l’énergie à un électron et à la production d’un électron de haute énergie au niveau du centre réactionnel dans les photosystèmes.

Les antennes collectrices (light harvesting complex, ou LHC) sont des ensembles comprenant des pigments (chlorophylles a et b, caroténoïdes et phycoérythrobiline) et des protéines. Elles collectent l’énergie lumineuse et la distribuent aux centres réactionnels des photosystèmes.

Les centres réactionnels sont le lieu où toute l’énergie converge. Ils sont composés de molécules de chlorophylle a (P680 ou P700) liée à un accepteur primaire d’électrons.

Les photosystèmes sont composés des antennes collectrices qui entourent un centre réactionnel et de plusieurs molécules (phéopytines, plastoquinone, ferrédoxine) servant à transporter des électrons et des protons. À l’exception de quelques transporteurs d’électrons toutes les molécules qui composent les photosystèmes sont raccordées les unes aux autres.

 

diter admin 17 octobre 2013 biologie aucun commentaire




Laissez-nous votre commentaire

Quelle est la cinquième lettre du mot lzeuuu ? :
© Domaine de Belleroche 2004 - 2024